Kinetics of a Particle:
Force and Acceleration

CHAPTER OBJECTIVES

® To state Newton's Second Law of Motion and to define mass
and weight.

® To analyze the accelerated motion of a particle using the equation
of motion with different coordinate systems.

® To investigate central-force motion and apply it to problems in
space mechanics.

13.1 Newton’s Second Law of Motion

Kinetics is a branch of dynamics that deals with the relationship between
the change in motion of a body and the forces that cause this change. The
basis for kinetics is Newton’s second law, which states that when an
unbalanced force acts on a particle, the particle will accelerate in the
direction of the force with a magnitude that is proportional to the force.

This law can be verified experimentally by applying a known
unbalanced force F to a particle, and then measuring the acceleration
a. Since the force and acceleration are directly proportional, the
constant of proportionality, m, may be determined from the ratio
m = F/a. This positive scalar m is called the mass of the particle.
Being constant during any acceleration, m provides a quantitative
measure of the resistance of the particle to a change in its velocity, that
is its inertia.
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If the mass of the particle is m, Newton’s second law of motion may be
written in mathematical form as

F = ma

The above equation, which is referred to as the equation o f motion, is
one of the most important formulations in mechanics.* As previously
stated, its validity is based solely on experimental evidence. In 1905,
however, Albert Einstein developed the theory of relativity and
placed limitations on the use of Newton’s second law for describing
general particle motion. Through experiments it was proven that time
is not an absolute quantity as assumed by Newton; and as a result, the
equation of motion fails to predict the exact behavior of a particle,
especially when the particle’s speed approaches the speed of light
(0.3 Gm/s). Developments of the theory of quantum mechanics by
Erwin Schrodinger and others indicate further that conclusions drawn
from using this equation are also invalid when particles are the size of
an atom and move close to one another. For the most part, however,
these requirements regarding particle speed and size are not
encountered in engineering problems, so their effects will not be
considered in this book.

Newton’s Law of Gravitational Attraction. Shortly after
formulating his three laws of motion, Newton postulated a law governing
the mutual attraction between any two particles. In mathematical form
this law can be expressed as

F=G—%4 (13-1)

where

F = force of attraction between the two particles

G = universal constant of gravitation; according to
experimental evidence G = 66.73(1072) m3/(kg - s?)

my, my = mass of each of the two particles

r = distance between the centers of the two particles

*Since m is constant, we can also write I' = d(mv)/dt, where mv is the particle’s linear
momentum. Here the unbalanced force acting on the particle is proportional to the time
rate of change of the particle’s linear momentum.
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In the case of a particle located at or near the surface of the earth, the
only gravitationalforce having any sizable magnitude is that between the
earth and the particle. This force is termed the “weight” and, for our
purpose, it will be the only gravitational force considered.

From Eq. 13-1, we can develop a general expression for finding the
weight W of a particle having a mass m; = m. Let m, = M, be the mass
of the earth and r the distance between the earth’s center and the
particle. Then, if g = GM,/r?, we have

W = mg

By comparison with F = ma, we term g the acceleration due to gravity.
For most engineering calculations g is a point on the surface of the earth
at sea level, and at a latitude of 45°, which is considered the “standard
location.” Here the values g = 9.81 m/s? = 32.2 ft/s? will be used for
calculations.

In the SIsystem the mass of the body is specified in kilograms, and the
weight must be calculated using the above equation, Fig. 13—1a. Thus,

W =mg(N) (g=9.81m/s? (13-2)

As a result, a body of mass 1 kg has a weight of 9.81 N; a 2-kg body
weighs 19.62 N; and so on.

In the FPS system the weight of the body is specified in pounds. The
mass is measured in slugs, a term derived from “sluggish” which refers to
the body’s inertia. It must be calculated, Fig. 13-1b, using

m (kg)

a=g(m/s)

W =mg (N)

SI system

(a)

-w
m=-g (slug)

m = %(slug) (g = 32.2ft/s?) (13-3)

Therefore, a body weighing 32.2 Ib has a mass of 1 slug; a 64.4-1b body
has a mass of 2 slugs; and so on.

a=g(ft/s?)

W (Ib)

FPS system
(b)

Fig. 13-1
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13.2 The Equation of Motion

When more than one force acts on a particle, the resultant force is
determined by a vector summation of all the forces; i.e., Fr = ZF. For
this more general case, the equation of motion may be written as

SF = ma (13-4)

To illustrate application of this equation, consider the particle shown
in Fig. 13-2a, which has a mass m and is subjected to the action of two
forces, F; and F,. We can graphically account for the magnitude and
direction of each force acting on the particle by drawing the particle’s
free-body diagram, Fig. 13-2b. Since the resultant of these forces
produces the vector ma, its magnitude and direction can be represented
graphically on the kinetic diagram, shown in Fig. 13-2¢.* The equal sign
written between the diagrams symbolizes the graphical equivalency
between the free-body diagram and the kinetic diagram;i.e., 2F = ma.t
In particular, note that if Fp = ZF = 0, then the acceleration is also
zero, so that the particle will either remain at rest or move along a
straight-line path with constant velocity. Such are the conditions of static
equilibrium, Newton’s first law of motion.

Inertial Reference Frame. When applying the equation of
motion, it is important that the acceleration of the particle be measured
with respect to a reference frame that is either fixed or translates with a
constant velocity. In this way, the observer will not accelerate and
measurements of the particle’s acceleration will be the same from any
reference of this type. Such a frame of reference is commonly known as a
Newtonian or inertial reference frame, Fig. 13-3.

When studying the motions of rockets and satellites, it is justifiable to
consider the inertial reference frame as fixed to the stars, whereas
dynamics problems concerned with motions on or near the surface of the
earth may be solved by using an inertial frame which is assumed fixed to
the earth. Even though the earth both rotates about its own axis and
revolves about the sun, the accelerations created by these rotations are
relatively small and so they can be neglected for most applications.

*Recall the free-body diagram considers the particle to be free of its surrounding supports
and shows all the forcesacting on the particle. The kinetic diagram pertains to the particle’s
motion as caused by the forces.

tThe equation of motion can also be rewritten in the form EF — ma = 0. The vector
—ma is referred to as the inertia force vector. If it is treated in the same way as a “force
vector,” then the state of “equilibrium” created is referred to as dynamic equilibrium. This
method of application is often referred to as the D’Alembert principle, named after the
French mathematician Jean le Rond d’Alembert.
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We are all familiar with the sensation one feels when sitting in a car that is subjected to a forward acceleration. Often people
think this is caused by a “force” which acts on them and tends to push them back in their seats; however, this is not the case.
Instead, this sensation occurs due to their inertia or the resistance of their mass to a change in velocity.

Consider the passenger who is strapped to the seat of a rocket sled. Provided the sled is at rest or is moving with constant
velocity, then no force is exerted on his back as shown on his free-body diagram.

P,
» %

f

At rest or constant velocity

When the thrust of the rocket engine causes the sled to accelerate, then the seat upon which he is sitting exerts a force F on
him which pushes him forward with the sled. In the photo, notice that the inertia of his head resists this change in motion
(acceleration), and so his head moves back against the seat and his face,which is nonrigid, tends to distort backward.

L

Acceleration

Upon deceleration the force of the seatbelt F tends to pull his body to a stop, but his head leaves contact with the back of the
seat and his face distorts forward, again due to his inertia or tendency to continue to move forward. No force is pulling him
forward, although this is the sensation he receives.

1

Deceleration
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13.3 Equation of Motion for a System of
Particles

The equation of motion will now be extended to include a system of
particles isolated within an enclosed region in space, as shown in Fig. 13-4a.
In particular, there is no restriction in the way the particles are connected,
so the following analysis applies equally well to the motion of a solid,
liquid, or gas system.

At the instant considered, the arbitrary i-th particle, having a mass n;,
is subjected to a system of internal forces and a resultant external force.
The internal force, represented symbolically as f;, is the resultant of all
the forces the other particles exert on the ith particle. The resultant
external force F; represents, for example, the effect of gravitational,
electrical, magnetic, or contact forces between the ith particle and
adjacent bodies or particles not included within the system.

The free-body and kinetic diagrams for the ith particle are shown in
Fig. 13-4b. Applying the equation of motion,

2F = ma; F, + f; = m;a;

When the equation of motion is applied to each of the other particles of
the system, similar equations will result. And, if all these equations are
added together vectorially, we obtain

ZF[ + Efl = Zmiai

=
~
Q
/
/ i \
(@ Q
: /
@ F =
f; >
x S y " /j’li a;
Free-body Kinetic
Inertial coordinate diagram diagram
system

(a) (b)

Fig. 13-4
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The summation of the internal forces, if carried out, will equal zero, since
internal forces between any two particles occur in equal but opposite
collinear pairs. Consequently, only the sum of the external forces will
remain, and therefore the equation of motion, written for the system of
particles, becomes

EFI' = Emiai (13—5)

If rs is a position vector which locates the center of mass G of the

particles, Fig. 13—4a, then by definition of the center of mass,

mrg = Zmx;, where m = Zm; is the total mass of all the particles.

Differentiating this equation twice with respect to time, assuming that no
mass is entering or leaving the system, yields

mag = Emia,-

Substituting this result into Eq. 13-5, we obtain

EF = mag (13—6)

Hence, the sum of the external forces acting on the system of particles is
equal to the total mass of the particles times the acceleration of its center
of mass G. Since in reality all particles must have a finite size to possess
mass, Eq. 13-6 justifies application of the equation of motion to a body
that is represented as a single particle.

Important Points

® The equation of motion is based on experimental evidence and is
valid only when applied within an inertial frame of reference.

® The equation of motion states that the unbalanced force on a
particle causes it to accelerate.

® An inertial frame of reference does not rotate, rather its axes
either translate with constant velocity or are at rest.

® Mass is a property of matter that provides a quantitative measure
of its resistance to a change in velocity. It is an absolute quantity
and so it does not change from one location to another.

® Weightis a force that is caused by the earth’s gravitation. It is not

absolute; rather it depends on the altitude of the mass from the
earth’s surface.

113
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13.4 Equations of Motion: Rectangular
Coordinates

When a particle moves relative to an inertial x, y, z frame of reference,
the forces acting on the particle, as well as its acceleration, can be expressed
in terms of their i, j, k components, Fig. 13-5. Applying the equation of
motion, we have

2F = ma; 2ZF.i+ ZF,j+ ZFk = m(a;i+ a)j + ak)

For this equation to be satisfied, the respective i, j, k components on the
left side must equal the corresponding components on the right side.
Consequently, we may write the following three scalar equations:

SF, = ma,
y 2F, = ma, (13-7)
x 2F, = ma,
y

In particular, if the particle is constrained to move only in the x—y plane,
Fig. 13-5 then the first two of these equations are used to specify the motion.

Procedure for Analysis

The equations of motion are used to solve problems which require a
relationship between the forces acting on a particle and the
accelerated motion they cause.

Free-Body Diagram.

e Select the inertial coordinate system. Most often, rectangular or
X, y, Z coordinates are chosen to analyze problems for which the
particle has rectilinear motion.

e Once the coordinates are established, draw the particle’s free-
body diagram. Drawing this diagram is very important since it
provides a graphical representation that accounts for all the
forces (ZF) which act on the particle, and thereby makes it
possible to resolve these forces into their x, y, z components.

e The direction and sense of the particle’s acceleration a should also
be established. If the sense is unknown, for mathematical
convenience assume that the sense of each acceleration component
acts in the same direction as its positive inertial coordinate axis.

e The acceleration may be represented as the ma vector on the
kinetic diagram.*

e Identify the unknowns in the problem.

*It is a convention in this text always to use the kinetic diagram as a graphical aid
when developing the proofs and theory. The particle’s acceleration or its components
will be shown as blue colored vectors near the free-body diagram in the examples.
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Equations of Motion.

e If the forces can be resolved directly from the free-body diagram,
apply the equations of motion in their scalar component form.

e If the geometry of the problem appears complicated, which often
occurs in three dimensions, Cartesian vector analysis can be used
for the solution.

e Friction. If a moving particle contacts a rough surface, it may be
necessary to use the frictional equation, which relates the
frictional and normal forces Fy and N acting at the surface of
contact by using the coefficient of kinetic friction, i.e., F; = pN.
Remember that F always acts on the free-body diagram such
that it opposes the motion of the particlerelative to the surface it
contacts. If the particle is on the verge of relative motion, then the
coefficient of static friction should be used.

e Spring. If the particle is connected to an elastic spring having
negligible mass, the spring force F; can be related to the
deformation of the spring by the equation F; = ks. Here k is the
spring’s stiffness measured as a force per unit length, and s is
the stretch or compression defined as the difference between
the deformed length / and the undeformed length [, i.e.,
s=1—1.

Kinematics.

e If the velocity or position of the particle is to be found, it will be
necessary to apply the necessary kinematic equations once the
particle’s acceleration is determined from 2F = ina.

e If acceleration is a function of time, use @ = dv/dt and v = ds/dt
which, when integrated, yield the particle’s velocity and position,
respectively.

e If acceleration is a function of displacement, integrate a ds = v dv
to obtain the velocity as a function of position.

o If acceleration is constant,use v = vy + a.t,s = so + vot + %actz,
v? = v + 2a/s — sp) to determine the velocity or position of the
particle.

e If the problem involves the dependent motion of several particles,
use the method outlined in Sec. 12.9 to relate their accelerations.
In all cases, make sure the positive inertial coordinate directions
used for writing the kinematic equations are the same as those
used for writing the equations of motion; otherwise, simultaneous
solution of the equations will result in errors.

e If the solution for an unknown vector component yields a
negative scalar, it indicates that the component acts in the
direction opposite to that which was assumed.

115
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EXAMPLE |13.1

The 50-kg crate shown in Fig. 13—-6a rests on a horizontal surface for
which the coefficient of kinetic friction is u, = 0.3. If the crate is
subjected to a 400-N towing force as shown, determine the velocity of
the crate in 3 s starting from rest.

SOLUTION

Using the equations of motion, we can relate the crate’s acceleration
(a) to the force causing the motion. The crate’s velocity can then be
determined using kinematics.

Free-Body Diagram. The weight of the crate is W = mg =
50 kg (9.81 m/s?) = 490.5 N. As shown in Fig. 13-6b, the frictional
force has a magnitude F' = u, N¢ and acts to the left, since it opposes the
motion of the crate. The acceleration a is assumed to act horizontally, in
the positive x direction. There are two unknowns, namely N¢ and a.

Equations of Motion. Using the data shown on the free-body
diagram, we have

B SF, = ma,; 400 cos 30° — 0.3Ng = 50a (1)
—2~  +13F = ma,; N¢ — 4905 + 400sin 30° = 0 )
e Solving Eq. 2 for N¢, substituting the result into Eq. 1, and solving

Ll for a yields

Ne = 2905 N
a = 5.185 m/s?

Kinematics. Notice that the acceleration is constant, since the

' applied force P is constant. Since the initial velocity is zero, the
<«F—— F=03N, X ) .
velocity of the crate in 3 s is
Ne () v=1v+at =0+ 5.1853)
(b) =156m/s — Ans.
Fig. 13-6 4905 N
400 N
= /“ >
FPAN] s0a

(©

NOTE: We can also use the alternative procedure of drawing the
crate’s free-body and kinetic diagrams, Fig. 13-6¢, prior to applying
the equations of motion.
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EXAMPLE |13.2

117

A 10-kg projectile is fired vertically upward from the ground, with an
initial velocity of 50 m/s, Fig. 13—7a. Determine the maximum height
to which it will travel if (a) atmospheric resistance is neglected; and
(b) atmospheric resistance is measured as F, = (0.01v%) N, where v is
the speed of the projectile at any instant, measured in m/s.

SOLUTION

In both cases the known force on the projectile can be related to its
acceleration using the equation of motion. Kinematics can then be
used to relate the projectile’s acceleration to its position.

Part (a) Free-Body Diagram.  Asshown in Fig. 13-7b, the projectile’s
weight is W = mg = 10(9.81) = 98.1 N. We will assume the
unknown acceleration a acts upward in the positive z direction.
Equation of Motion.

+1=F, = ma,, —98.1 = 10a, a= —9.81 m/s’
The result indicates that the projectile, like every object having free-

flight motion near the earth’s surface, is subjected to a constant
downward acceleration of 9.81 m/s.

Kinematics. Initially, zo = 0 and vy = 50 m/s, and at the maximum
height z = h, v = 0. Since the acceleration is constant, then

(+h vF = v + 2a(z — 2o)
0 = (50)2 + 2(—9.81)(h — 0)
h=127m Ans.

Part (b) Free-Body Diagram. Since the force Fp = (0.01v2) N
tends to retard the upward motion of the projectile, it acts downward
as shown on the free-body diagram, Fig. 13-7c.

Equation of Motion.
+12F, = ma.;  —0.01v> — 981 = 10a, a = —(0.0012* + 9.81)

Kinematics. Here the acceleration is not constant since Fp depends
on the velocity. Since a = f(v), we can relate a to position using

(+1) adz = vdv, —(0.001v* + 9.81) dz = v dv

Separating the variables and integrating, realizing that initially z, = 0,
vy = 50 m/s (positive upward), and at z = h, v = 0, we have

- 0 v dv 0
/ dz = */ ————————— = =500 In(v* + 9810)
0 50 0.001v° + 9.81 50 m/s
h=114m Ans.

NOTE: The answer indicates a lower elevation than that obtained in
part (a) due to atmospheric resistance or drag.

(a)

Fp

e —
—
0

98.1 N
(c)
Fig. 13-7




118 CHAPTER 13

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

EXAMPLE |13.3

The baggage truck A shown in the photo has a weight of 900 1b and
tows a 550-1b cart B and a 325-1b cart C. For a short time the driving
frictional force developed at the wheels of the truck is F4 = (40¢) b,
where ¢ is in seconds. If the truck starts from rest, determine its speed
in 2 seconds. Also, what is the horizontal force acting on the coupling
between the truck and cart B at this instant? Neglect the size of the
truck and carts.

900 Ib
550 Ib 3251b
il
T ST
= ﬁ%‘igﬂ ainf
@) o

Lok

(a)

N4

SOLUTION

Free-Body Diagram. As shown in Fig. 13-8g, it is the frictional
driving force that gives both the truck and carts an acceleration. Here
we have considered all three vehicles as a single system.

Equation of Motion. Only motion in the horizontal direction has
to be considered.

+ 550 +
s SF, = ma,: 40f = (900 550 325>

322

a = 0.7256¢

Kinematics. Since the acceleration is a function of time, the velocity
of the truck is obtained using @ = dv/dt with the initial condition that
vg = 0 att = 0. We have

2s

= 1.45ft/s Ans.

v 2s
/ dv = / 0.7256¢ dt; v = 0.3628(>
0 0 0

Free-Body Diagram. In order to determine the force between the
truck and cart B, we will consider a free-body diagram of the truck so
that we can “expose” the coupling force T as external to the free-body
diagram,Fig. 13-8b.

Equation of Motion. Whent = 25, then

900
& SF, = ma,; 402)—-T = <m>[0.7256(2)]
T = 3941b Ans.

NOTE: Try and obtain this same result by considering a free-body
diagram of carts B and C as a single system.
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EXAMPLE [13.4

A smooth 2-kg collar C, shown in Fig. 13-9a, is attached to a spring
having a stiffness k = 3 N/m and an unstretched length of 0.75 m. If
the collar is released from rest at A, determine its acceleration and the
normal force of the rod on the collar at the instant y = 1 m.

SOLUTION

Free-Body Diagram. The free-body diagram of the collar when it
is located at the arbitrary position y is shown in Fig. 13-9b.
Furthermore, the collar is assumed to be accelerating so that “a” acts
downward in the positive y direction. There are four unknowns,
namely, N¢, Fy, a,and 6.

Equations of Motion. @)
5 3F, = ma,; ~N¢ + Fycos6 = 0 (1)
+|3F, = may; 19.62 — F,sin = 2a @) Fx 196N
a AL )
¥ 0
From Eq. 2 it is seen that the acceleration depends on the magnitude % i No
and direction of the spring force. Solution for N¢ and a is possible (b)

once F; and 0 are known.

The magnitude of the spring force is a function of the stretch s of the
spring; i.e., Fy = ks. Here the unstretched length is AB = 0.75 m,

Fig. 13-9a; therefore, s=CB — AB ="\/ y? + (0.75)2 — 0.75.

Since k = 3 N/m, then
F, = ks = 3(\/y* + (0.75)* - 0.75) 3)

From Fig. 13-9q, the angle 6 is related to y by trigonometry.

Y
i 4
tan 60 75 4)

Substituting y = 1 m into Eqs. 3 and 4 yields F; = 1.50 N and
6 = 53.1°. Substituting these results into Eqgs. 1 and 2, we obtain

Nc = 0900 N Ans.
a=921m/s*| Ans.

NOTE: This is not a case of constant acceleration, since the spring
force changes both its magnitude and direction as the collar moves
downward.
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(©)

196.2 N

(d)
Fig. 13-10
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EXAMPLE |13.5

Datum
s bl

Sp

The 100-kg block A shown in Fig. 13-10a is released from rest. If the
masses of the pulleys and the cord are neglected, determine the speed
of the 20-kg block B in 2 s.

SOLUTION

Free-Body Diagrams. Since the mass of the pulleys is neglected,
then for pulley C, ma = 0 and we can apply 2F, = 0 as shown in
Fig. 13-10b. The free-body diagrams for blocks A and B are shown
in Fig. 13-10c and d, respectively. Notice that for A to remain
stationary T = 490.5 N, whereas for B to remain static T = 196.2 N.
Hence A will move down while B moves up. Although this is the
case, we will assume both blocks accelerate downward, in the
direction of +s4 and +sp. The three unknowns are 7,a 4, and ag.

Equations of Motion. Block A,

+|ZF, = ma,; 981 — 2T = 100a4 1)
Block B,

+|SF, = ma,; 1962 — T = 20ap )
Kinematics. The necessary third equation is obtained by relating a4

to ap using a dependent motion analysis, discussed in Sect. 12.9. The
coordinates s,4 and sp in Fig. 13-10a measure the positions of A and B
from the fixed datum. It is seen that

254 + sp =1
where [ is constant and represents the total vertical length of cord.
Differentiating this expression twice with respect to time yields

2a4 = —ap (3)

Notice that when writing Eqgs. 1 to 3,the positive direction was always

assumed downward. It is very important to be consistent in this

assumption since we are seeking a simultaneous solution of equations.
The results are

T =3270N
as = 327 m/s’
ag = —6.54 m/s?
Hence when block A accelerates downward, block B accelerates

upward as expected. Since ap is constant, the velocity of block Bin2 s
is thus
(+1) v = vy + apt
0+ (—6.54)(2)
—13.1m/s Ans.

The negative sign indicates that block B is moving upward.
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. FUNDAMENTAL PROBLEMS

F13-1. The motor winds in the cable with a constant
acceleration, such that the 20-kg crate moves a distance
s = 6m in 3 s, starting from rest. Determine the tension
developed in the cable. The coefficient of kinetic friction
between the crate and the plane is u, = 0.3.

F13-1

F13-2. If motor M exerts a force of FF = (102 + 100) N
on the cable, where ¢ is in seconds, determine the velocity of
the 25-kg crate when ¢ = 4 5. The coefficients of static and
kinetic friction between the crate and the plane are
s = 03 and py, = 0.25, respectively. The crate is initially
at rest.

F13-2

F13-3. A spring of stiffness & = 500 N/m is mounted
against the 10-kg block. If the block is subjected to the force
of F = 500 N, determine its velocity at s = 0.5 m. When
s = 0, the block is at rest and the spring is uncompressed.
The contact surface is smooth.

k =500 N/m

\
WA

F13-3

F13-4. The 2-Mg car is being towed by a winch. If the winch
exerts a force of 7 = (100s) N on the cable, where s is the
displacement of the car in meters, determine the speed of the
car when s = 10m, starting from rest. Neglect rolling
resistance of the car.

F13-4

F13-5. The spring has a stiffness & = 200 N/m and is
unstretched when the 25-kg block is at A. Determine the
acceleration of the block when s = 0.4 m. The contact
surface between the block and the plane is smooth.

F13-5

F13-6. Block B rests upon a smooth surface. If the
coefficients of static and kinetic friction between A and B
are uy = 04 and p, = 0.3, respectively, determine the
acceleration of each block if P = 6 1b.

20 1b

lsom

F13-6
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®13-1. The casting has a mass of 3 Mg. Suspended in a
vertical position and initially at rest, it is given an upward
speed of 200 mm/s in 0.3 s using a crane hook H. Determine
the tension in cables AC and A B during this time interval if
the acceleration is constant.

Prob. 13-1

13-2. The 160-Mg train travels with a speed of 80 km/h
when it starts to climb the slope. If the engine exerts a
traction force F of 1/20 of the weight of the train and the
rolling resistance Fp, is equal to 1/500 of the weight of the
train, determine the deceleration of the train.

13-3. The 160-Mg train starts from rest and begins to
climb the slope as shown. If the engine exerts a traction
force F of 1/8 of the weight of the train, determine the
speed of the train when it has traveled up the slope a
distance of 1 km. Neglect rolling resistance.

Probs. 13-2/3

*13-4. The 2-Mg truck is traveling at 15 m/s when the brakes
on all its wheels are applied, causing it to skid for a distance of
10 m before coming to rest. Determine the constant horizontal
force developed in the coupling C, and the frictional force
developed between the tires of the truck and the road during
this time. The total mass of the boat and trailer is 1 Mg.

Prob. 13-4
°13-5. If blocks A and B of mass 10 kg and 6 kg,
respectively, are placed on the inclined plane and released,
determine the force developed in the link. The coefficients
of kinetic friction between the blocks and the inclined plane
are w4 = 0.1 and uz = 0.3. Neglect the mass of the link.

Prob. 13-5
13-6. Motors A and B draw in the cable with the
accelerations shown. Determine the acceleration of the
300-1b crate C and the tension developed in the cable. Neglect
the mass of all the pulleys.

Prob. 13-6
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13-7. The van is traveling at 20 km/h when the coupling
of the trailer at A fails. If the trailer has a mass of 250 kg and
coasts 45 m before coming to rest, determine the constant
horizontal force F created by rolling friction which causes
the trailer to stop.

Prob. 13-7

*13-8. If the 10-Ib block A slides down the plane with a
constant velocity when 8 = 30°, determine the acceleration
of the block when 6 = 45°.

Prob. 13-8

*13-9. Each of the three barges has a mass of 30 Mg,
whereas the tugboat has a mass of 12 Mg. As the barges are
being pulled forward with a constant velocity of 4 m/s, the
tugboat must overcome the frictional resistance of the water,
which is 2 kN for each barge and 1.5 kN for the tugboat. If the
cable between A and B breaks, determine the acceleration of
the tugboat.

13-10. The crate has a mass of 80 kg and is being towed by
a chain which is always directed at 20° from the horizontal
as shown. If the magnitude of P is increased until the crate
begins to slide, determine the crate’s initial acceleration if
the coefficient of static friction is u,=0.5 and the
coefficient of kinetic friction is uy = 0.3.

13-11. Thecrate has a mass of 80 kg and is being towed by
a chain which is always directed at 20° from the horizontal
as shown. Determine the crate’s acceleration in t = 2's if
the coefficient of static friction is u, =0.4, the coefficient of
kinetic friction is p,=0.3, and the towing force is
P = (90?) N,where ¢ is in seconds.

Probs. 13-10/11

*13-12. Determine the acceleration of the system and the
tension in each cable. The inclined plane is smooth, and the
coefficient of kinetic friction between the horizontal surface
and block Cis (up)e = 0.2.

Prob. 13-9

J
(M) = 02—

Prob. 13-12
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*13-13. The two boxcars A and B have a weight of 20 000 1b
and 30 000 Ib, respectively. If they coast freely down the
incline when the brakes are applied to all the wheels of car A
causing it to skid, determine the force in the coupling C
between the two cars. The coefficient of kinetic friction
between the wheels of A and the tracks is p, = 0.5. The
wheels of car B are free to roll. Neglect their mass in the
calculation. Suggestion: Solve the problem by representing
single resultant normal forces acting on A and B, respectively.

Prob. 13-13

13-14. The 3.5-Mg engine is suspended from a spreader
beam AB having a negligible mass and is hoisted by a crane
which gives it an acceleration of 4 m/s> when it has a
velocity of 2 m/s. Determine the force in chains CA and CB
during the lift.

13-15. The 3.5-Mg engine is suspended from a spreader
beam having a negligible mass and is hoisted by a crane
which exerts a force of 40 kN on the hoisting cable.
Determine the distance the engine is hoisted in 4 s, starting
from rest.

Probs. 13-14/15

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

*13-16. The man pushes on the 60-1b crate with a force F.
The force is always directed down at 30° from the
horizontal as shown, and its magnitude is increased until the
crate begins to slide. Determine the crate’s initial
acceleration if the coefficient of static friction is u, = 0.6
and the coefficient of kinetic friction is p, = 0.3.

=

==

Prob. 13-16

*13-17. A force of F = 15 1b is applied to the cord.
Determine how high the 30-1b block A rises in 2 s starting
from rest. Neglect the weight of the pulleys and cord.

13-18. Determine the constant force F which must be
applied to the cord in order to cause the 30-1b block A to
have a speed of 12 ft/s when it has been displaced 3 ft
upwardstarting from rest. Neglect the weight of the pulleys
and cord.

Probs. 13-17/18
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13-19. The 800-kg car at B is connected to the 350-kg car
at A by a spring coupling. Determine the stretch in the
spring if (a) the wheels of both cars are free to roll and
(b) the brakes are applied to all four wheels of
car B, causing the wheels to skid. Take (u;)g = 0.4. Neglect
the mass of the wheels.

Prob. 13-19

*13-20. The 10-Ib block A travels to the right at
vy = 2 ft/s at the instant shown. If the coefficient of kinetic
friction is p, = 0.2 between the surface and A, determine
the velocity of A when it has moved 4 ft. Block B has a
weight of 20 Ib.

Prob. 13-20

*13-21. Block B has a mass m and is released from rest
when it is on top of cart A, which has a mass of 3m.
Determine the tension in cord CD needed to hold the cart
from moving while B slides down A. Neglect friction.

13-22. Block B has a mass m and is released from rest
when it is on top of cart A, which has a mass of 3m.
Determine the tension in cord CD needed to hold the cart
from moving while B slides down A. The coefficient of
kinetic friction between A and B is p.

Probs. 13-21/22

13-23. The 2-kg shaft CA passes through a smooth journal
bearing at B. Initially, the springs, which are coiled loosely
around the shaft, are unstretched when no force is applied
to the shaft. In this position s = s’ = 250 mm and the shaft
is at rest. If a horizontal force of F = 5kN is applied,
determine the speed of the shaft at the instant s = 50 mm,
s’ = 450 mm. The ends of the springs are attached to the
bearing at B and the caps at C and A.

| s s |
F=5kN
¢ B Ale———
keg = 3kN/m kap =2kN/m
. -
Prob. 13-23
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*13-24. If the force of the motor M on the cable is shown
in the graph, determine the velocity of the cart when t = 3s.
The load and cart have a mass of 200 kg and the car starts

from rest.

F(N)

*13-25. If the motor draws
acceleration of 3 m/sz, determine the reactions at the
supports A and B.The beam has a uniform mass of 30 kg/m,
andthe crate has a mass of 200 kg. Neglect the mass of the

motor and pulleys.

Prob. 13-24

Prob. 13-25

in the cable with an

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

13-26. A freight elevator, including its load, has a mass of
500 kg. It is prevented from rotating by the track and wheels
mounted along its sides. When ¢ = 2 s, the motor M draws in
the cable with a speed of 6 m/s, measured relative to the
elevator. If it starts from rest, determine the constant
acceleration of the elevator and the tension in the cable.
Neglect the mass of the pulleys, motor, and cables.

.
[W;
-

Prob. 13-26

13-27. Determine the required mass of block A so that
when it is released from rest it moves the 5-kg block B a
distance of 0.75 m up along the smooth inclined plane in
t = 2 s.Neglect the mass of the pulleys and cords.

Prob. 13-27
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*13-28. Blocks A and B have a mass of m, and mg, where
my >mp. If pulley C is given an acceleration of ay,
determine the acceleration of the blocks. Neglect the mass
of the pulley.

Prob. 13-28

©13-29. The tractor is used to lift the 150-kg load B with
the 24-m-long rope, boom, and pulley system. If the tractor
travels to the right at a constant speed of 4 m/s, determine
the tension in the rope when s4 = 5Sm. When s, = 0,
Sp = 0.

13-30. The tractor is used to lift the 150-kg load B with the
24-m-long rope, boom, and pulley system. If the tractor
travels to the right with an acceleration of 3 m/s? and has a
velocity of 4 m/s at the instant s, = 5 m, determine the
tension in the rope at this instant. When s, = 0, sz = 0.

f SA "

Probs. 13-29/30

13-31. The 75-kg man climbs up the rope with an
acceleration of 0.25m/s?, measured relative to the rope.
Determine the tension in the rope and the acceleration of
the 80-kg block.

Prob. 13-31

*13-32. Motor M draws in the cable with an acceleration
of 4ft/sz, measured relative to the 200-lb mine car.
Determine the acceleration of the car and the tension in the
cable. Neglect the mass of the pulleys.

Prob. 13-32
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©13-33. The 2-1b collar C fits loosely on the smooth shaft.
If the spring is unstretched when s = 0 and the collar is
given a velocity of 15 ft/s, determine the velocity of the
collar whens = 1 ft.

Prob. 13-33

13-34. In the cathode-ray tube, electrons having a mass m
are emitted from a source point S and begin to travel
horizontally with an initial velocity v, While passing
between the grid plates a distance /, they are subjected to a
vertical force having a magnitude eV/w, where e is the
charge of an electron, V' the applied voltage acting across
the plates, and w the distance between the plates. After
passing clear of the plates, the electrons then travel in
straight lines and strike the screen at A. Determine the
deflection d of the electrons in terms of the dimensions of
the voltage plate and tube. Neglect gravity which causes a
slight vertical deflection when the electron travels from S to
the screen, and the slight deflection between the plates.

L 1

Prob. 13-34

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

13-35. The 2-kg collar C is free to slide along the smooth
shaft AB. Determine the acceleration of collar C if (a) the
shaft is fixed from moving, (b) collar A, which is fixed to
shaft AB, moves to the left at constant velocity along the
horizontal guide, and (c) collar A is subjected to an
acceleration of 2 m/s,2 to the left. In all cases, the motion
occurs in the vertical plane.

Prob. 13-35

*13-36. Blocks A and B each have a mass m. Determine
the largest horizontal force P which can be applied to B so
that A will not move relative to B. All surfaces are smooth.

*13-37. Blocks A and B each have a mass m. Determine
the largest horizontal force P which can be applied to B so
that A will not slip on B. The coefficient of static friction
between A and B is u,. Neglect any friction between B and C.

Probs. 13-36/37
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13-38. If a force F = 200 N is applied to the 30-kg cart,
show that the 20-kg block A will slide on the cart. Also
determine the time for block A to move on the cart 1.5 m.
The coefficients of static and Kinetic friction between the
block and the cart are uy = 0.3 and ;, = 0.25. Both the cart
and the block start from rest.

Prob. 13-38

13-39. Suppose it is possible to dig a smooth tunnel
through the earth from a city at A to a city at B as shown. By
the theory of gravitation, any vehicle C of mass m placed
within the tunnel would be subjected to a gravitational
force which is always directed toward the center of the
earth D. This force F has a magnitude that is directly
proportional to its distance » from the earth’s center. Hence,
if the vehicle has a weight of W = mg when it is located on
the earth’s surface, then at an arbitrary location r the
magnitude of force Fis FF = (mg/R)r, where R = 6328 km,
the radius of the earth. If the vehicle is released from rest
when itis at B, x = s = 2 Mm, determine the time needed
for it to reach A, and the maximum velocity it attains.
Neglect the effect of the earth’s rotation in the calculation
and assume the earth has a constant density. Hint: Write the
equation of motion in the x direction, noting that r cos
0 = x. Integrate, using the kinematic relation v dv = a dx,
then integrate the result using v = dx/dt.

Prob. 13-39

*13-40. The 30-Ib crate is being hoisted upward with a
constant acceleration of 6 ft/s. If the uniform beam AB has
a weight of 200 Ib, determine the components of reaction at
the fixed support A. Neglect the size and mass of the pulley
at B. Hint: First find the tension in the cable, then analyze
the forces in the beam using statics.

Prob. 13-40

*13-41. If a horizontal force of P = 10 1b is applied to
block A, determine the acceleration of block B. Neglect
friction. Hint: Show that ag = a4 tan 15°.

Prob. 13-41
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13-42. Block A has a mass n 4 and is attached to a spring
having a stiffness k& and unstretched length [y If another
block B, having a mass mp, is pressed against A so that the
spring deforms a distance d, determine the distance both
blocks slide on the smooth surface before they begin to
separate. What is their velocity at this instant?

13-43. Block A has a mass m4 and is attached to a spring
having a stiffness & and unstretched length lg. If another
block B, having a mass mp, is pressed against A so that the
spring deforms a distance d, show that for separation to
occur it is necessary that d >2u,g(m, + mpg)/k, where uy
is the coefficient of kinetic friction between the blocks and
the ground. Also, what is the distance the blocks slide on the
surface before they separate?

Probs. 13-42/43

*13-44. The 600-kg dragster is traveling with a velocity of
125m/s when the engine is shut off and the braking
parachute is deployed. If air resistance imposed on the
dragster due to the parachute is Fp = (6000 + 0.9v*)N,
where v is in m/s, determine the time required for the
dragster to come to rest.

Prob. 13-44

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

®13-45. The buoyancy force on the 500-kg balloon is
F = 6kN, and the air resistance is F, = (100v) N, where v is
in m/s. Determine the terminal or maximum velocity of the
balloon if it starts from rest.

lFD = (100)N

Prob. 13-45
13-46. The parachutist of mass m is falling with a velocity
of vy at the instant he opens the parachute. If air resistance
is F = Cv?, determine her maximum velocity (terminal
velocity) during the descent.

Prob. 13-46

13-47. The weight of a particle varies with altitude such
that W = m(gr§)/r?, where r, is the radius of the earth and
ris the distance from the particle to the earth’s center. If the
particle is fired vertically with a velocity v, from the earth’s
surface, determine its velocity as a function of position #
What is the smallest velocity v, required to escape the
earth’s gravitational field, what is r,,, and what is the time
required to reach this altitude?
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13.5 Equations of Motion: Normal and
Tangential Coordinates

When a particle moves along a curved path which is known, the equation
of motion for the particle may be written in the tangential, normal, and
binormal directions, Fig. 13-11. Note that there is no motion of the particle
in the binormal direction, since the particle is constrained to move along
the path. We have

2F = ma
SFu, + ZF,u, + ZFyu, = ma, + ma,

This equation is satisfied provided

2F, = ma,
SF, = ma, (13-8)
EF], =0

Recall that a, (= dv/dt) represents the time rate of change in the
magnitude of velocity. So if XF, acts in the direction of motion, the
particle’s speed will increase, whereas if it acts in the opposite
direction, the particle will slow down. Likewise, a, (= v*/p) represents
the time rate of change in the velocity’s direction. It is caused by ZF,,,
which always acts in the positive n direction, i.e., toward the path’s
center of curvature. From this reason it is often referred to as the
centripetal force.

The centrifuge is used to subject a passenger to a very large
normal acceleration caused by rapid rotation. Realize that
this acceleration is caused by the unbalanced normal force
exerted on the passenger by the seat of the centrifuge.

Inertial coordinate
system

Fig. 13-11

131
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Procedure for Analysis

When a problem involves the motion of a particle along a known
curved path, normal and tangential coordinates should be
considered for the analysis since the acceleration components can
be readily formulated. The method for applying the equations of
motion, which relate the forces to the acceleration, has been
outlined in the procedure given in Sec. 13.4. Specifically, for ¢ n, b
coordinates it may be stated as follows:

Free-Body Diagram.

e Establish the inertial 7, n, b coordinate system at the particle and
draw the particle’s free-body diagram.

e The particle’s normal acceleration a, always acts in the positive n
direction.

e If the tangential acceleration a, is unknown, assume it acts in the
positive ¢ direction.

e There is no acceleration in the b direction.

e Identify the unknowns in the problem.

Equations of Motion.

e Apply the equations of motion, Eqs. 13-8.

Kinematics.

e Formulate the tangential and normal components of
acceleration;i.e., @, = dv/dt or a, = v dv/ds and a,, = v*/p.

e If the path is defined as y = f(x), the radius of curvature at the
point where the particle is located can be obtained from
p = [1 + (dy/dx)’}V*/\d’y/dx|.
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EXAMPLE [13.6

Determine the banking angle 6 for the race track so that the wheels of
the racing cars shown in Fig. 13-12a will not have to depend upon
friction to prevent any car from sliding up or down the track. Assume
the cars have negligible size, a mass m, and travel around the curve of
radius p with a constant speed v.

SOLUTION b
Before looking at the following solution, give some thought as to why
it should be solved using ¢, n, b coordinates.
all
Free-Body Diagram. As shown in Fig. 13-12b, and as stated in the =—n
problem, no frictional force acts on the car. Here N represents the
resultant of the ground on all four wheels. Since a,, can be calculated,
the unknowns are Nc and 6. P
N
Equations of Motion. Using the 1, b axes shown, S :;/
= mg
ESE o L )
SF, = ma,; Ncsinf = m (1)
P Fig. 13-12
+12F, =0; Necos® — mg =0 (2)
Eliminating N and m from these equations by dividing Eq. 1 by Eq. 2,
we obtain
2
tan 6 = s
8p
2
6 = tan! <v_> Ans.
8p

NOTE: The result is independent of the mass of the car. Also, a force
summation in the tangential direction is of no consequence to the
solution. If it were considered, then a, = dv/dt = 0, since the car
moves with constant speed. A further analysis of this problem is
discussed in Prob. 21-47.
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EXAMPLE [13.7

The 3-kg disk D is attached to the end of a cord as shown in
Fig. 13-13a. The other end of the cord is attached to a ball-and-socket
joint located at the center of a platform. If the platform rotates
rapidly, and the disk is placed on it and released from rest as shown,
determine the time it takes for the disk to reach a speed great enough
to break the cord. The maximum tension the cord can sustain is 100 N,
and the coefficient of kinetic friction between the disk and the
platform is p; = 0.1.

Motion of
o platform

\
\

SOLUTION
Free-Body Diagram. The frictional force has a magnitude
b F = 4, Np = 0.1Np and a sense of direction that opposes the relative

motion of the disk with respect to the platform. It is this force that
gives the disk a tangential component of acceleration causing v to
increase, thereby causing 7 to increase until it reaches 100 N. The
weight of the disk is W = 3(9.81) = 29.43 N. Since a, can be related
to v, the unknowns are Np, a,, and v.

Equations of Motion.

’U2
S F, = ma,; T= 3<T> (1)
(b) EE = may; OlND = 3at (2)
Fig. 13-13 SF, =0 Np — 2943 =0 (3)

Setting 7 = 100 N, Eq. 1 can be solved for the critical speed v, of the
disk needed to break the cord. Solving all the equations, we obtain

ND = 29.43 N
a, = 0.981 m/s?
Vg = 5.77 m/s

Kinematics. Since q, is constant, the time needed to break the cord is
Ve = Vg + ait
577 = 0 + (0.981)¢
t =589s Ans.
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EXAMPLE [13.8

Design of the ski jump shown in the photo requires knowing the type
of forces that will be exerted on the skier and her approximate
trajectory. If in this case the jump can be approximated by the parabola
shown in Fig. 13-144, determine the normal force on the 150-Ib skier
the instant she arrives at the end of the jump, point A, where her
velocity is 65 ft/s. Also, what is her acceleration at this point?

SOLUTION
Why consider using 7, ¢ coordinates to solve this problem?

Free-Body Diagram. Since dy/dx = x/100 |-, = 0, the slope at A
is horizontal. The free-body diagram of the skier when she is at A is
shown in Fig. 13-14b. Since the path is curved, there are two
components of acceleration, a,, and a,. Since a, can be calculated, the
unknowns are a, and N4.

Equations of Motion.

150 (65)2>
+ S N = =
1SF, = ma,; Na— 150 32-2( ; (1) “"T
150 b
150
E3F = may; 0=2>>a (2)
a N
The radius of curvature p for the path must be determined at point S e
A(0, =200 ft). Here y = 55x%> — 200, dy/dx = 15, d*y/dx* = 15, .
so thatatx = 0,
1 + (dy/dx)*]* 1+ (0”2 N,
U0 el | I S 2 N o
|d%y/dx?| x=0 |l
I . . . Fig. 13-14
Substituting this into Eq. 1 and solving for N4, we obtain
N4 = 3471b Ans.
Kinematics. From Eq.2,
a, =0
Thus,
2 (65)°
)
=—=——=4221ft/s
a, p 100 ft/s
as=a, =422 ft/s2 1 Ans.

NOTE: Apply the equation of motion in the y direction and show
that when the skier is in midair her acceleration is 32.2 ft/s,
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EXAMPLE [13.9

The 60-kg skateboarder in Fig.13—15a coasts down the circular track.
If he starts from rest when # = 0°, determine the magnitude of the
normal reaction the track exerts on him when 6 = 60°. Neglect his
size for the calculation.

SOLUTION

Free-Body Diagram. The free-body diagram of the skateboarder
when he is at an arbitrary position 6 is shown in Fig. 13-15b. At
0 = 60° there are three unknowns, N, a,, and a,, (or v).

60 (9.81) N Equations of Motion.

2
\SF, = ma,;, Ns— [60(9.81)N]sing = (60 kg)<ﬂ> (1)
LSF, = ma; [60(9.81)N]cos 6 = (60 kg) a,

a, = 9.81 cos 6

Kinematics. Since a, is expressed in terms of 6, the equation
vdv = a,ds must be used to determine the speed of the
skateboarder when 6 = 60°. Using the geometric relation s = 6r,
where ds =rdf = (4 m)do, Fig. 13-15¢, and the initial condition
v =0atf =0° we have,

vdv = a,ds
v 60°
/ vdv = / 9.81 cos 6(4 dh)
(C) 0 0
) 2| 60°
Fig. 13-15 Y| =3924sin6
2 0 0

?)2

5~ 0 = 39.24(sin 60° — 0)

v? = 67.97 m¥s?

Substituting this result and # = 60° into Eq. (1), yields

N, = 152923 N = 1.53kN Ans.
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. FUNDAMENTAL PROBLEMS

F13-7. The block rests at a distance of 2 m from the center
of the platform. If the coefficient of static friction between
the block and the platform is u, = 0.3, determine the
maximum speed which the block can attain before it begins
to slip. Assume the angular motion of the disk is slowly
increasing. 4

~

F13-7
F13-8. Determine the maximum speed that the jeep can
travel over the crest of the hill and not lose contact with
the road.

p = 250 ft

+
F13-8
F13-9. A pilot weighs 150 Ib and is traveling at a constant
speed of 120 ft/s. Determine the normal force he exerts on
the seat of the plane when he is upside down at A. The loop
has a radius of curvature of 400 ft.

|4
\OOf;m\

AN
_L*’/

F13-9

F13-10. The sports car is traveling along a 30° banked road
having a radius of curvature of p = 500 ft. If the coefficient
of static friction between the tires and the road is ug; = 0.2,
determine the maximum safe speed so no slipping occurs.
Neglect the size of the car.

p =500 ftfﬂ

0 = 30°
¥

F13-10
F13-11. If the 10-kg ball has a velocity of 3 m/s when it is
at the position A, along the vertical path, determine the
tension in the cord and the increase in the speed of the ball
at this position.

F13-11
F13-12. The motorcycle has a mass of 0.5 Mg and a
negligible size. It passes point A traveling with a speed of
15 m/s, which is increasing at a constant rate of 1.5 m/s%.
Determine the resultant frictional forcce exerted by the
road on the tires at this instant.

F13-12
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*13-48. The 2-kg block B and 15-kg cylinder A are
connected to a light cord that passes through a hole in the
center of the smooth table. If the block is given a speed of
v = 10m/s, determine the radius r of the circular path
along which it travels.

*13-49. The 2-kg block B and 15-kg cylinder A are
connected to a light cord that passes through a hole in the
center of the smooth table. If the block travels along a
circular path of radius r = 1.5m, determine the speed of
the block.

Probs. 13-48/49

13-50. At the instant shown, the 50-kg projectile travels in
the vertical plane with a speed of v = 40m/s. Determine
the tangential component of its acceleration and the radius
of curvature p of its trajectory at this instant.

13-51. At the instant shown, the radius of curvature of the
vertical trajectory of the 50-kg projectile is p = 200m.
Determine the speed of the projectile at this instant.

praca
/i

Probs. 13-50/51

*13-52. Determine the mass of the sun, knowing that the
distance from the earth to the sun is 149.6(10°) km. Hint: Use
Eq. 13 -1 to represent the force of gravity acting on the earth.

*13-53. The sports car, having a mass of 1700 kg, travels
horizontally along a 20° banked track which is circular and
has a radius of curvature of p = 100 m. If the coefficient of
static friction between the tires and the road is p, = 0.2,
determine the maximum constant speed at which the car can
travel without sliding up the slope. Neglect the size of the car.

13-54. Using the data in Prob. 13-53, determine the
minimum speed at which the car can travel around the track
without sliding down the slope.

6= 20°
'

Probs. 13-53/54
13-55. The device shown is used to produce the

experience of weightlessness in a passenger when he
reaches point A, # = 90°, along the path. If the passenger
has a mass of 75 kg, determine the minimum speed he
should have when he reaches A so that he does not exert a
normal reaction on the seat. The chair is pin-connected to
the frame BC so that he is always seated in an upright
position. During the motion his speed remains constant.

*13-56. A man having the mass of 75 kg sits in the chair
which is pin-connected to the frame BC. If the man is
always seated in an upright position, determine the
horizontal and vertical reactions of the chair on the man at
the instant 8 = 45°. At this instant he has a speed of 6 m/s,
which is increasing at 0.5 m/s2.

A

Probs. 13-55/56
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*13-57. Determine the tension in wire CD just after wire 13-59. An acrobat has a weight of 150 Ib and is sitting on a
AB is cut. The small bob has a mass m. chair which is perched on top of a pole as shown. If by a
mechanical drive the pole rotates downward at a constant
rate from 6 = 0° such that the acrobat’s center of mass G
maintains a constant speed of v, = 10 ft/s, determine the
angle 6 at which he begins to “fly” out of the chair. Neglect
friction and assume that the distance from the pivot O to G

isp = 15 ft.
A
Prob. 13-57 Prob. 13-59
13-58. Determine the time for the satellite to complete its *13-60. A spring, having an unstretched length of 2 ft, has
orbit around the earth. The orbit has a radius r measured one end attached to the 10-1b ball. Determine the angle 6 of
from the center of the earth. The masses of the satellite and the spring if the ball has a speed of 6 ft/s tangent to the
the earth are m, and M, respectively. horizontal circular path.
~—61n.—

1

k =20 Ib/ft

Prob. 13-58 Prob. 13-60
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*13-61. If the ball has a mass of 30 kg and a speed
v = 4 m/s at the instant it is at its lowest point, 6§ = 0°,
determine the tension in the cord at this instant. Also,
determine the angle 6 to which the ball swings and
momentarily stops. Neglect the size of the ball.

13-62. The ball has a mass of 30 kg and a speed
v = 4m/s at the instant it is at its lowest point, 6§ = 0°.
Determine the tension in the cord and the rate at which the
ball’s speed is decreasing at the instant § = 20°. Neglect
the size of the ball.

Probs. 13-61/62

13-63. The vehicle is designed to combine the feel of a
motorcycle with the comfort and safety of an automobile. If
the vehicle is traveling at a constant speed of 80 km/h along
a circular curved road of radius 100 m, determine the tilt
angle 6 of the vehicle so that only a normal force from the
seat acts on the driver. Neglect the size of the driver.

Prob. 13-63

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

*13-64. The ball has a mass m and is attached to the cord
of length /. The cord is tied at the top to a swivel and the ball
is given a velocity v,. Show that the angle 6 which the cord
makes with the vertical as the ball travels around the
circular path must satisfy the equation tan sin § = v}/gl.
Neglect air resistance and the size of the ball.

Prob. 13-64

*13-65. The smooth block B, having a mass of 0.2 kg, is
attached to the vertex A of the right circular cone using a
light cord. If the block has a speed of 0.5 m/s around the cone,
determine the tension in the cord and the reaction which
the cone exerts on the block. Neglect the size of the block.

Prob. 13-65
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13-66. Determine the minimum coefficient of static
friction between the tires and the road surface so that the
1.5-Mg car does not slide as it travels at 80 km/h on the
curved road. Neglect the size of the car.

13-67. 1If the coefficient of static friction between the tires
and the road surface is u, = 0.25, determine the maximum
speed of the 1.5-Mg car without causing it to slide when it
travels on the curve. Neglect the size of the car.

+——p=200m

Probs. 13-66/67
*13-68. At the instant shown, the 3000-1b car is traveling
with a speed of 75 ft/s, which is increasing at a rate of 6ft/s.
Determine the magnitude of the resultant frictional force
the road exerts on the tires of the car. Neglect the size of the
car.

4 p=600ft

(L)

Prob. 13-68

*13-69. Determine the maximum speed at which the car
with mass m can pass over the top point A of the vertical
curved road and still maintain contact with the road. If the
car maintains this speed, what is the normal reaction the
road exerts on the car when it passes the lowest point B on
the road?

Prob. 13-69

13-70. A 5-Mg airplane is flying at a constant speed of
350 km/h along a horizontal circular path of radius
r = 3000m. Determine the uplift force L acting on the
airplane and the banking angle 6. Neglect the size of the
airplane.

13-71. A 5-Mg airplane is flying at a constant speed of
350 km/h along a horizontal circular path. If the banking
angle 0 = 15°, determine the uplift force L acting on the
airplane and the radius r of the circular path. Neglect the
size of the airplane.

Probs. 13-70/71

*13-72. The 0.8-Mg car travels over the hill having the
shape of a parabola. If the driver maintains a constant speed
of 9 m/s, determine both the resultant normal force and the
resultant frictional force that all the wheels of the car exert
on the road at the instant it reaches point A. Neglect the
size of the car.

*13-73. The 0.8-Mg car travels over the hill having the
shape of a parabola. When the car is at point A, it is traveling
at 9 m/s and increasing its speed at 3 m/s?. Determine both
the resultant normal force and the resultant frictional force
that all the wheels of the car exert on the road at this instant.
Neglect the size of the car.

y
=20(1 - X
/y =20(1 = 00
X
80 m l

Probs. 13-72/73
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13-74. The 6-kg block is confined to move along the
smooth parabolic path. The attached spring restricts the
motion and, due to the roller guide, always remains
horizontal as the block descends. If the spring has a stiffness
of k = 10 N/m, and unstretched length of 0.5 m,determine
the normal force of the path on the block at the instant
x = 1 m when the block has a speed of 4 m/s. Also, what is
the rate of increase in speed of the block at this point?
Neglect the mass of the roller and the spring.

y

Prob. 13-74

13-75. Prove that if the block is released from rest at point
B of a smooth path of arbitrary shape, the speed it attains
when it reaches point A is equal to the speed it attains when
it falls freely through a distance /1;i.e., v = V2gh.

i

Prob. 13-75

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

*13-76. A toboggan and rider of total mass 90 kg travel
down along the (smooth) slope defined by the equation
y = 0.08x% At the instant x = 10 m, the toboggan’s speed
is 5 m/s. At this point, determine the rate of increase in
speed and the normal force which the slope exerts on the
toboggan. Neglect the size of the toboggan and rider for the
calculation.

10m
Prob. 13-76

*13-77. The skier starts from rest at A(10 m, 0) and
descends the smooth slope, which may be approximated by
a parabola. If she has a mass of 52 kg, determine the normal
force the ground exerts on the skier at the instant she
arrives at point B. Neglect the size of the skier. Hint: Use
the result of Prob. 13-75.

10 m B U

YT m

Sm

Prob. 13-77
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13-78. The 5-1b box is projected with a speed of 20 ft/s at
A up the vertical circular smooth track. Determine the
angle 6 when the box leaves the track.

13-79. Determine the minimum speed that must be given
to the 5-1b box at A in order for it to remain in contact with
the circular path. Also, determine the speed of the box when
it reaches point B.

13-82. Determine the maximum speed the 1.5-Mg car can
have and still remain in contact with the road when it passes
point A. If the car maintains this speed, what is the normal
reaction of the road on it when it passes point B? Neglect
the size of the car.

Probs. 13-78/79

*13-80. The 800-kg motorbike travels with a constant
speed of 80 km/h up the hill. Determine the normal force
the surface exerts on its wheels when it reaches point A.
Neglect its size.

100 m

Prob. 13-80
*13-81. The 1.8-Mg car travels up the incline at a constant

speed of 80 km/h. Determine the normal reaction of the
road on the car when it reaches point A. Neglect its size.

y
x

y = 20100

§

50 m

Prob. 13-81

25m

Prob. 13-82

13-83. The 5-lb collar slides on the smooth rod, so that
when it is at A it has a speed of 10ft/s.If the spring to which
it is attached has an unstretched length of 3 ft and a stiffness
of k = 101b/ft, determine the normal force on the collar
and the acceleration of the collar at this instant.

Prob. 13-83
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S Fu, . . . .
A 13.6 Equations of Motion: Cylindrical
$Fing Coordinates
/ When all the forces acting on a particle are resolved into cylindrical
13 2Fu, components, i.e.,along the unit-vector directions u,, uy, u,, Fig. 13-16, the
/ equation of motion can be expressed as
0 2 2F = ma
/<9>\ ZFu, + ZFguy + 2Fu, = ma, + maguy + ma,u,
.
To satisfy this equation, we require

Inertial coordinate system

SF, = ma,
Fig. 13-16 SF, = may (13-9)
2F, = ma;

If the particle is constrained to move only in the r—6 plane, then only the
first two of Eqs. 13-9 are used to specify the motion.

Tangential and Normal Forces. The most straightforward type
of problem involving cylindrical coordinates requires the determination
of the resultant force components 2F,, ZFy, 2 F, which cause a particle
to move with a known acceleration. If, however, the particle’s accelerated
motion is not completely specified at the given instant, then some
information regarding the directions or magnitudes of the forces acting
on the particle must be known or computed in order to solve Egs. 13-9.
For example, the force P causes the particle in Fig. 13-17a to move along
a path r = f(6). The normal force N which the path exerts on the particle
is always perpendicular to the tangent of the path, whereas the frictional
force F always acts along the tangent in the opposite direction of motion.
The directions of N and F can be specified relative to the radial
coordinate by using the angle yr (psi), Fig. 13-17b, which is defined
between the extended radial line and the tangent to the curve.

r=[(6) r=1(6)

Tangent
As the car of weight W descends
the spiral track, the resultant
normal force which the track ¥

exerts on the car can be
represented by its three cylindrical
components. —N, creates a radial
acceleration, —a,, Ny creates a
transverse acceleration ay, and the
difference W — N, creates an
azimuthal acceleration —a,. Fig. 13-17

o

(b)
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This angle can be obtained by noting that when the particle is
displaced a distance ds along the path, Fig. 13—17c, the component of
displacement in the radial direction is dr and the component of
displacement in the transverse direction is r df. Since these two
components are mutually perpendicular, the angle ¢ can be determined
from tan ¢ = r d6/dr, or

tan iy = (13-10)

’
dr/de

If ¢ is calculated as a positive quantity, it is measured from the extended
radial line to the tangent in a counterclockwise sense or in the positive
direction of 6. If it is negative, it is measured in the opposite direction
to positive 6. For example, consider the cardioid r = a(l + cos ),
shown in Fig. 13-18. Because dr/df = —asin 6, then when 6 = 30°,
tany = a(l + cos30°)/(—asin30°) = —3.732, or y = —75°, measured
clockwise, opposite to +6 as shown in the figure.

Procedure for Analysis

Cylindrical or polar coordinates are a suitable choice for the
analysis of a problem for which data regarding the angular motion
of the radial line r are given, or in cases where the path can be
conveniently expressed in terms of these coordinates. Once these
coordinates have been established, the equations of motion can
then be applied in order to relate the forces acting on the particle to
its acceleration components. The method for doing this has been
outlined in the procedure for analysis given in Sec. 13.4. The
following is a summary of this procedure.

Free-Body Diagram.

e Establish the r, 6, z inertial coordinate system and draw the
particle’s free-body diagram.

e Assume that a,, ay, a, act in the positive directions of r, 6, z if they
are unknown.

e Identify all the unknowns in the problem.

Equations of Motion.

e Apply the equations of motion, Eqgs. 13-9.

Kinematics.

o Use the methods of Sec. 12.8 to determine r and the time
derivatives r, ¥, 6, 0, Z, and then evaluate the acceleration
components a, = ¥ — 18>, ay = 10 + 2i6,a, = Z.

e If any of the acceleration components is computed as a negative
quantity, it indicates that it acts in its negative coordinate direction.

e When taking the time derivatives of » = f(6), it is very important
to use the chain rule of calculus, which is discussed at the end of
Appendix C.

r=f(6)

145

(c)
Fig. 13-17

Fig. 13-18
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EXAMPLE |13.10

The smooth 0.5-kg double-collar in Fig. 13—19a can freely slide on arm
AB and the circular guide rod. If the arm rotates with a constant
angular velocity of # = 3 rad/s, determine the force the arm exerts on
the collar at the instant = 45°. Motion is in the horizontal plane.

SOLUTION

6 = 3radls Free-Body Diagram. The normal reaction N of the circular guide
rod and the force F of arm A B act on the collar in the plane of motion,
Fig.13-19b. Note that F acts perpendicular to the axis of arm AB, that
is, in the direction of the 6 axis, while N¢ acts perpendicular to the
tangent of the circular path at 6 = 45°. The four unknowns are
Ne, F, a,, ag.

Equations of Motion.
+/2F, = ma,; —Nc cos 45° = (0.5 kg) a, (1)
+NZFy = may; F — N¢sin45° = (0.5 kg) ay )

tangent
Kinematics. Using the chain rule (see Appendix C), the first and
second time derivatives of r when 8 = 45°,6 = 3rad/s,0 = 0, are

r=08cosf = 0.8 cosd45° = 0.5657 m

(b)
Fig. 13-19

F=—08sin66 = —0.8sin 45°(3) = —1.6971 m/s
r= —O.S[Sin 6 6+cos 6 62]
= —0.8sin 45°(0)+cos 45°(3%)] = —5.091 m/s?
We have
a, =7 —r? = —5.091 m/s*> — (0.5657 m)(3 rad/s)> = —10.18 m/s?
ag = rf + 276 = (0.5657 m)(0) + 2(—1.6971 m/s)(3 rad/s)
= —10.18 m/s’
Substituting these results into Egs. (1) and (2) and solving, we get
N¢c =720N
F=0 Ans.
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EXAMPLE |13.11

The smooth 2-kg cylinder C in Fig. 13-20a has a pin P through its
center which passes through the slot in arm OA.If the arm is forced to
rotate in the vertical plane at a constant rate § = 0.5 rad/s, determine
the force that the arm exerts on the peg at the instant 6 = 60°.

SOLUTION
Whyisita good idea to use polar coordinates to solve this problem? ’ g o
Free-Body Diagram. The free-body diagram for the cylinder is Y a

7 6 = 05 rad/s

shown in Fig. 13-20b. The force on the peg, Fp, acts perpendicular to
the slot in the arm. As usual, a, and a; are assumed to act in the
directions of positive r and 6, respectively. Identify the four unknowns.

Equations of Motion. Using the data in Fig. 13-20b, we have

+/3F, = ma,; 19.62 sin @ — N¢sin 6 = 2a, (1)
+NIFy = may; 19.62cos0 + Fp — Nccos 0 = 2a, (2)
Kinematics. From Fig. 13-20a,r can be related to 6 by the equation @
(a)
4
r= 0 = 0.4csch
sin 6

Since d(csc ) = —(csc 6 cot 6) df and d(cot §) = —(csc? 6) db, then
r and the necessary time derivatives become

6=105 r=04csch
=0 7= —0.4(csc 6 cot 6)0
= —0.2cscfcoth
¥ = —0.2(—csc 6 cot 6)() cot & — 02 csc O —csc? 6)6
= 0.1 csc 6(cot® 6 + csc’h)
Evaluating these formulas at = 60°, we get (b)
6=05 r=0462 Fig. 13-20
0=0 r = —0.133
¥ =0.192

a, =7 — ré? = 0.192 — 0.462(0.5)> = 0.0770
r0 + 210 = 0 + 2(—0.133)(0.5) = —0.133

Substituting these results into Eqgs. 1 and 2 with 6 = 60° and
solving yields

Nec = 195N Fp = —0.356N Ans.

ag

The negative sign indicates that Fp acts opposite to the direction
shown in Fig. 13-206.
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EXAMPLE |13.12

A can C, having a mass of 0.5 kg, moves along a grooved horizontal
slot shown in Fig. 13-21a. The slot is in the form of a spiral, which is
defined by the equation r = (0.16) m, where 6 is in radians. If the arm

OA rotates with a constant rate 6 = 4 rad/s in the horizontal plane,

A r 5 determine the force it exerts on the can at the instant # = 7 rad.
\ . Neglect friction and the size of the can.
0 =4rad/s
Top View SOLUTION
Free-Body Diagram. The driving force F¢ acts perpendicular to the
(a) arm OA, whereas the normal force of the wall of the slot on the can,

Nc, acts perpendicular to the tangent to the curve at § = 7 rad,
Fig. 13-21b. As usual, a, and a, are assumed to act in the positive
F¢ directions of r and 6, respectively. Since the path is specified, the angle
s which the extended radial line r makes with the tangent, Fig. 13-21c,
can be determined from Eq. 13-10. We have r = 0.16, so that
S — dr/df = 0.1, and therefore
¢ r 0.1
0

Ne tandr=ae - o1 ¢

When 8 = 7, = tan '@ = 72.3°, so that ¢ = 90° — ¢ = 17.7°, as
shown in Fig. 13-21c. Identify the four unknowns in Fig. 13-215b.

Tangent ay

) Equations of Motion. Using ¢ = 17.7° and the data shown in
Fig. 13-21b, we have

& SF = ma,; N¢ cos 17.7° = 0.5a, (1)
+3F, = may; Fe — Nesin 17.7° = 0.5a, (2)

(®)

Kinematics. The time derivatives of  and 0 are

6 = 4rad/s r=0.16
6=0 F=0.10 = 01(4) = 0.4m/s

¥ =016 =0
At the instant 6 = 7 rad,
i= a, =7 — rf> = 0 — 0.1(x)(4)> = —5.03 m/s?
ag = rf + 219 = 0 + 2(0.4)(4) = 3.20 m/s

W Substituting these results into Egs. 1 and 2 and solving yields
¢ Nec = —264N
Tangent ¢ Fc = 0800 N Ans.
(c) What does the negative sign for N indicate?

Fig. 13-21
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FUNDAMENTAL PROBLEMS

F13-13. Determine the constant angular velocity 6 of the
vertical shaft of the amusement ride if ¢ = 45°. Neglect the
mass of the cables and the size of the passengers.

1.5m

8m

F13-13

F13-14. The 0.2-kg ball is blown through the smooth
vertical circular tube whose shape is defined by
r = (0.6 sin §) m, where 6 is in radians. If § = (7 %) rad,
where ¢ is in seconds, determine the magnitude of force F
exerted by the blower on the ball when ¢t = 0.5s.

149

F13-15. The 2-Mg car is traveling along the curved road
described by r = (50¢”’) m, where 6 is in radians. If a camera
is located at A and it rotates with an angular velocity of
6 = 0.05 rad/s and an angular acceleration of 6 = 0.01 rad/s’
at the instant = ¥ rad, determine the resultant friction force
developed between the tires and the road at this instant.

F13-15

F13-16. The 0.2-kg pin P is constrained to move in the
smooth curved slot, which is defined by the lemniscate
r = (0.6 cos 20) m. Its motion is controlled by the rotation
of the slotted arm OA, which has a constant clockwise
angular velocity of 6=-3 rad/s. Determine the force arm
OA exerts on the pin P when 6 = 0°. Motion is in the
vertical plane.

F13-14

F13-16
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| | PROBLEMS

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

*13-84. The path of motion of a 5-1b particle in the
horizontal plane is described in terms of polar coordinates
as r = (2t + 1) ft and 0 = (0.5 — 1) rad, where ¢ is in
seconds. Determine the magnitude of the resultant force
acting on the particle when t = 2s.

¢13-85. Determine the magnitude of the resultant force
acting on a 5-kg particle at the instant ¢ = 2 s, if the particle
is moving along a horizontal path defined by the equations
r=(2¢t+10)m and 6 = (1.5/ — 6¢) rad, where ¢ is in
seconds.

13-86. A 2-kg particle travels along a horizontal smooth
path defined by

r= lt3+2 m, 60 = ﬁ rad
4 ’ 4 ’

where ¢ is in seconds. Determine the radial and transverse
components of force exerted on the particle when ¢ = 2s.

13-87. A 2-kg particle travels along a path defined by
r=03+2%m,6 = <%z3 + 2>rad

andz = (5 — 2t2) m, where ¢ is in seconds. Determine the r,
6,z components of force that the path exerts on the particle
at the instant ¢ = 1s.

*13-88. If the coefficient of static friction between the
block of mass m and the turntable is u,, determine the
maximum constant angular velocity of the platform without
causing the block to slip.

Prob. 13-88

*13-89. The 0.5-kg collar C can slide freely along the smooth
rod AB. At a given instant, rod AB is rotating with an angular
velocity of 6 = 2rad /s and has an angular acceleration of
6 =2 rad/s?. Determine the normal force of rod AB and the
radial reaction of the end plate B on the collar at this instant.
Neglect the mass of the rod and the size of the collar.

A

0.6 m

6,0

Prob. 13-89
13-90. The 2-kg rod AB moves up and down as its end slides

on the smooth contoured surface of the cam, where r = 0.1 m
and z = (0.02 sin 6) m. If the cam is rotating with a constant
angular velocity of 5 rad/s, determine the force on the roller A
when 6 = 90°. Neglect friction at the bearing C and the mass
of the roller.

13-91. The 2-kg rod AB moves up and down as its end
slides on the smooth contoured surface of the cam, where
r = 0.1 m and z = (0.02 sin #) m. If the cam is rotating at a
constant angular velocity of 5 rad/s, determine the maximum
and minimum force the cam exerts on the roller at A. Neglect
friction at the bearing C and the mass of the roller.

B

z = 0.02 sinf

6=5rad/s {ﬂ

Probs. 13-90/91
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*13-92. If the coefficient of static friction between the
conical surface and the block of mass m is p, = 0.2,
determine the minimum constant angular velocity 6 so that
the block does not slide downwards.

*13-93. If the coefficient of static friction between the conical
surface and the block is p; = 0.2, determine the maximum
constant angular velocity 6 without causing the block to slide
upwards.

- 300mm —-‘

Probs. 13-92/93

13-94. If the position of the 3-kg collar C on the smooth rod
AB is held at r = 720mm, determine the constant angular
velocity 6 at which the mechanism is rotating about the
vertical axis. The spring has an unstretched length of 400 mm.
Neglect the mass of the rod and the size of the collar.

(;/\
\\"/

300 mm

Prob. 13-94

13-95. The mechanism is rotating about the vertical axis
with a constant angular velocity of § = 6rad/s. If rod AB
is smooth, determine the constant position r of the 3-kg
collar C.The spring has an unstretched length of 400 mm.
Neglect the mass of the rod and the size of the collar.

300 mm

tgq

Prob. 13-95

*13-96. Due to the constraint, the 0.5-kg cylinder C travels
along the path described by r = (0.6 cos #)m. If arm OA
rotates counterclockwise with an angular velocity of
6 = 2rad/sand an angular acceleration of # = 0.8 rad/s” at
the instant 6 = 30°, determine the force exerted by the arm
on the cylinder at this instant. The cylinder is in contact with
only one edge of the smooth slot, and the motion occurs in
the horizontal plane.

Prob. 13-96
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©13-97. The 0.75-1b smooth can is guided along the
circular path using the arm guide. If the arm has an
angular velocity 6=2 rad/s and an angular acceleration
6= 0.4 rad/s2 at the instant 6 = 30°, determine the force of
the guide on the can. Motion occurs in the horizontal plane.

13-98. Solve Prob. 13-97 if motion occurs in the vertical
plane.

0.5 ft

Probs. 13-97/98

13-99. The forked rod is used to move the smooth
2-1b particle around the horizontal path in the shape of a
limacon, r = (2 + cos 6) ft. If at all times 6 = 0.5rad/s,
determine the force which the rod exerts on the particle at
the instant & = 90°. The fork and path contact the particle
on only one side.

#13-100. Solve Prob. 13-99 at the instant § = 60°.

¢13-101. The forked rod is used to move the smooth
2-1b particle around the horizontal path in the shape of a
limagon, r = (2 + cos ) ft. If # = (0.5¢*) rad, where ¢ is in
seconds, determine the force which the rod exerts on the
particle at the instant + = 1 s.The fork and path contact the
particle on only one side.

Probs. 13-99/100/101

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

13-102. The amusement park ride rotates with a constant
angular velocity of # = 0.8rad/s. If the path of the ride is
defined by r = (3sinf +5)m and 2z = (3cos6f)m,
determine the r, 6, and z components of force exerted by
theseat on the 20-kg boy when 6 = 120°.

Prob. 13-102

13-103. The airplane executes the vertical loop defined by
2 = [810(10%)cos 26]m?. If the pilot maintains a constant
speed v = 120m/s along the path, determine the normal
force the seat exerts on him at the instant 6 = 0°. The pilot
has a mass of 75 kg.

7 = [810(10%) cos 2 ]m?

Prob. 13-103
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*13-104. A boy standing firmly spins the girl sitting on a
circular “dish” or sled in a circular path of radius r; = 3 m
such that her angular velocity is6, = 0.1 rad/s. If the attached
cable OC is drawn inward such that the radial coordinate r
changes with a constant speed of # = —0.5 m/s, determine
the tension it exertson the sled at the instant » = 2 m.Thessled
and girl have a total mass of 50 kg. Neglect the size of the girl
and sled and the effects of friction between the sled and ice.
Hint: First show that the equation of motion in the 6
direction yields @y = r6 + 2i6 = (1/r) d/dt(r*6) = 0. When
integrated, 20 =C ,where the constant C is determined from
the problem data.

Prob. 13-104

13-105. The smooth particle has a mass of 80g. It is
attached to an elastic cord extending from O to P and due to
the slotted arm guide moves along the horizontal circular
path r = (0.8sin ) m. If the cord has a stiffness
k = 30 N/m and an unstretched length of 0.25 m, determine
the force of the guide on the particle when 6 = 60°. The
guide has a constant angular velocity 6 = 5 rad/s.

13-106. Solve Prob. 13-105 if 6 = 2 rad/s> when 6 = 5 rad/s
and 6 = 60°.

Probs. 13-105/106

13-107. The 1.5-kg cylinder C travels along the path
described by r = (0.6sinf)m. If arm OA rotates
counterclockwise with a constant angular velocity of
0 = 3rad/s, determine the force exerted by the smooth slot
in arm OA on the cylinder at the instant 6 = 60°. The spring
has a stiffness of 100 N/m and is unstretched when 6 = 30°.
The cylinder is in contact with only one edge of the slotted
arm. Neglect the size of the cylinder. Motion occurs in the
horizontal plane.

*13-108. The 1.5-kg cylinder C travels along the path
described by r = (0.6sin0)m. If arm OA is rotating
counterclockwise with an angular velocity of 6 = 3rad/s,
determine the force exerted by the smooth slot in arm OA on
the cylinder at the instant § = 60°. The spring has a stiffness
of 100 N/m and is unstretched when 6 = 30°.The cylinder is
in contact with only one edge of the slotted arm. Neglect the
size of the cylinder. Motion occurs in the vertical plane.

r=0.6sin 6

Probs. 13-107/108

*13-109. Using air pressure, the 0.5-kg ball is forced to
move through the tube lying in the horizontal plane and
having the shape of a logarithmic spiral. If the tangential
force exerted on the ball due to air pressure is 6 N,
determine the rate of increase in the ball’s speed at the
instant & = /2. Also, what is the angle ¢ from the extended
radial coordinate r to the line of action of the 6-N force?

_— r=02¢""
Prob. 13-109
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13-110. The tube rotates in the horizontal plane at a
constant rate of = 4 rad/s. If a 0.2-kg ball B starts at the
origin O with an initial radial velocity of + = 1.5 m/s and
moves outward through the tube, determine the radial and
transverse components of the ball’s velocity at the instant it
leaves the outer end at C, r = 0.5 m. Hint: Show that
the equation of motion in the r direction is ¥ — 16r = 0.
The solution is of the form r = Ae™ | Be*. Evaluate the
integration constants A and B, and determine the time ¢
when r = 0.5 m. Proceed to obtain v, and vy.

Prob. 13-110

13-111. The pilot of an airplane executes a vertical
loop which in part follows the path of a cardioid,
r =600(1 + cos 0) ft. If his speed at A (0 =0°) is a
constant vp = 80 ft/s, determine the vertical force the
seat belt must exert on him to hold him to his seat when
the plane is upside down at A. He weighs 150 1b.

r =600 (1 + cos ) ft

Prob. 13-111

KINETICS OF A PARTICLE: FORCE AND ACCELERATION

*13-112. The 0.5-1b ball is guided along the vertical circular
path r = 2r.cos 6 using the arm OA. If the arm has an
angular velocity 6 =04 rad/s and an angular acceleration
6 = 0.8 rad/s” at the instant 6 = 30°, determine the force of
the arm on the ball. Neglect friction and the size of the ball.
Setr, = 0.4 ft.

¢13-113. The ball of mass m is guided along the vertical
circular path r = 2r, cos 6 using the arm OA. If the arm has
a constant angular velocity 6, determine the angle § = 45°
at which the ball starts to leave the surface of the
semicylinder. Neglect friction and the size of the ball.

Probs. 13-112/113

13-114. The ball has a mass of 1 kg and is confined to
move along the smooth vertical slot due to the rotation of
the smooth arm OA. Determine the force of the rod on the
ball and the normal force of the slot on the ball when
6 = 30°.The rod is rotating with a constantangular velocity
0 = 3rad/s. Assume the ball contacts only one side of the
slot at any instant.

13-115.  Solve Prob. 13-114 if the arm has an angular
acceleration of § = 2 rad/s’ when 6 = 3 rad/s at § = 30°.

0.5m

Probs. 13-114/115



